skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nemier, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Brain-inspired HyperDimensional (HD) computing emulates cognitive tasks by computing with long binary vectors–aka hypervectors–as opposed to computing with numbers. However, we observed that in order to provide acceptable classification accuracy on practical applications, HD algorithms need to be trained and tested on non-binary hypervectors. In this paper, we propose SearcHD, a fully binarized HD computing algorithm with a fully binary training. SearcHD maps every data points to a high-dimensional space with binary elements. Instead of training an HD model with non-binary elements, SearcHD implements a full binary training method which generates multiple binary hypervectors for each class. We also use the analog characteristic of non-volatile memories (NVMs) to perform all encoding, training, and inference computations in memory. We evaluate the efficiency and accuracy of SearcHD on a wide range of classification applications. Our evaluation shows that SearcHD can provide on average 31.1× higher energy efficiency and 12.8× faster training as compared to the state-of-the-art HD computing algorithms. 
    more » « less